
 1

Extend training material for SPICOSA

provided by

Joachim Maes

SPICOSA WP8

VITO

contact: joachim.maes@vito.be

Plankton dynamics in a bottle.

Introduction

This manual introduces a simple example from the field of experimental ecology to show

how an Extend model is developed an how it can be packed as an Extend model block

that resides in a model block library. This is indeed an ultimate goal of the SPICOSA

project. Here, a step by step guide is presented which subsequently shows how

• to construct a model based on a conceptual description

• to calibrate this model using an experimental dataset based on laboratory

observations

• to encapsulate the model in a more hierarchical structure

• to encode the model using ModL, the programming language of Extend

• to create a library in which the blocks reside

• to add documentation to the model block so that potential users can use the block

 2

Example model: the coexistence of two cladoceran
species

This example is taken from a paper by Soetaert et al1. (2002). The simple model describes

the competitive interaction between two zooplankton species, Daphnia galeata and

Bosmina longirostris, grazing on the same food source (Soetaert et al. 2002). Both species

have different maximum growth rates and different half-saturation constants, such that

Daphnia is the superior competitor (higher net growth) at high food concentrations,

whereas Bosmina achieves higher growth at low food concentrations. They are kept in a

culture where they are transferred to new medium with a known amount of food at

regular time intervals. The experimental conditions are such that there is no growth of

the food in the medium. The model can be used to find out under which conditions of

transfer regime and food concentration, both species may coexist or which of the two

species will out compete the other species.

A conceptual model of the coexistence of the two plankton species was made in Extend

(Fig. 1). The food in the medium and the biomass of both Daphnia and Bosmina represent

the stocks of the model (the state variables or the holding tanks). The unit is biomass

expressed as mg C per litre. Flows between the stocks increase or decrease the stock

level. Each time at transfer time; the contents of the medium is reset to the intial

conditions. The stock of food decreases due to grazing. The latter process increases the

biomass of the two plankton species while respiration is responsible for stock decrease.

1 Soetaert K, deClippele V, Herman P (2002) FEMME, a flexible environment for mathematically
modelling the environment. Ecological Modelling 151 (2-3): 177-193.

 3

Model parameters

Grazing
AssDaphnia = 0.75
AssBosmina = 0.92
MaxIngDaphnia = 0.27 h-1
MaxIngBosmina = 0.083 h-1
ksDaphnia = 0.98 mgC L-1
ksBosmina = 0.18 mgC L-1

Losses
RespDaphnia = 0.005 h-1
RespBosmina = 0.005 h-1

Transfer
TransferTime = 20 h

Initial conditions
DaphniaT0 = 0.5 mgC L-1
BosminaT0 = 0.5 mgC L-1
FoodInMedium = 0.1 mgC L-1

Fig. 1. Left. Conceptual model of the coexistence of two zooplankton species feeding on the same
resource (CoExistenceModel_v0.mox). The yellow box represents the dynamics of the food
source. At transfer time, the food concentration is reset at initial conditions. Two species, Bosmina
and Daphnia, are consuming food. This process decreases the food stock while it increases the
biomass of the two plankton. Biomass is reduced because of losses due to respiration. Right.
Model parameters used in the nominal model.

 4

The model equations, expressing the rate of change in time, are simple:

(1) dDaphnia / dt = IngestionDaphnia�× AssDaphnia − RespirationDaphnia

(2) dBosmina / dt = IngestionBosmina�× AssBosmina − RespirationBosmina

(3) dFood / dt = − IngestionDaphnia − IngestionBosmina

At transfer time: Food = FoodInMedium

The ingestion of food by the zooplankton species is limited by the food concentration

according to a hyperbolic function and respiration is simply first-order with respect to

animal biomass. A fixed fraction (the assimilation fraction) of ingested material is

converted to animal biomass.

For Daphnia, respiration and ingestion are calculated as:

IngestionDaphnia = MaxIngDaphnia�× Food / [Food + ks] ×�Daphnia

RespirationDaphnia=respDaphnia�DAPHNIA

 5

Step 1. First implementation of the model in Extend

The different equations with appropriate parameters (see Fig. 1 for the parameters used

in the model) were implemented in Extend. The model is saved as

CoExistenceModel_v1.mox and can be downloaded from the internal or the public

website. Fig. 2 presents a screenshot of the complete model. This is how the model looks

like when you implement the stocks and flows for the first time. For better interpretation,

coloured boxes were drawn grouping the stocks and flows of the different state variables

of the model. These boxes are nothing more than coloured rectangles. They do not

represent any hierarchy in this model. It is important to say that the integration block was

used in the simulation, rather than the holding tank. You can use both blocks to simulate

the changes of the state variables of the model2.

Five groups can be distinguished on the model pane. The yellow block assembles the

processes that increase or decrease the food concentration. Every 20 hours, the food

concentration is reset at 0.1 mgC L-1. This operation is performed using the S and R

connectors of the integrator block. Input to the R connector is provided by the decision

structure grouped in the blue box. The input of the integrator block is connected to the

sum of food ingestion by the two zooplankton species (TotalIng). The green box groups

all the processes that affect the Bosmina biomass. The in connector of the integrator

receives the product of assimilation and ingestion minus the respiration. The S connector

receives the initial concentration of Bosmina in the culture. Ingestion is calculated using

the maximum ingestion rate, the food concentration, the half saturation constant and the

Bosmina biomass. Respiration is calculated using a respiration rate and the Bosmina

biomass. The purple box is a copy of the green box but with parameters for Daphnia in

stead of Bosmina. Couplings between the three state variables provide for feed backs.

For each of the integrator blocks, the option “Euler (forward)” was selected. This is an

appropriate numerical scheme to solve the coupled differential equations. Again, it is

perfectly fine to use the holding tank block in stead of the integrator block. Then you

need to connect the sources (processes that increase the amount of biomass) to the In

connector of the holding tank and the sinks (processes that decrease the amount of

biomass) to the Want connector. Finally, in the upper right corner of the model pane the

I/O plotter icon presents the output.

2 There are some differences between the intergrator block and the holding tank block.

 6

If you run the model with a simulation time of 500 hours, you will notice that Bosmina

prevails under the present food conditions (0.1 mgC L-1 and transfer time of 20 hours, Fig.

2). On top of the pane, a small user dialog was added in order to facilitate the simulation

of different food conditions. The two parameters of interest, transfer time and initial food

concentration, were cloned using the cloning tool. Manually changing these parameters

in the dialog will result in changed values in their respective constant blocks.

Fig. 2. Left. Implementation of the coexistence model in Extend. Right. Under the
nominal model conditions, Bosmina (red line) prevails while Daphnia (green line) will be
driven to extirpation. The blue line represents the food concentration in the medium
which is refreshed every 20 hours.

This model needs a number of improvements. First, it needs calibration against a set of

experimental data. Most of the parameters used in the model are based on experiments

since these two species are heavily studied by experimental ecologists and evolutionary

biologist. Notice however, that the respiration rate is for both species equal to 0.005 h-1.

For this parameter, no species specific data was available so we can now fit the model to

observations by altering these two parameters. This will be explained in the next

paragraph.

 7

A next improvement to this model is to remove duplication. The dynamics for both

plankton species are mathematically the same. Only other parameters are used. The

model building blocks that constitute the plankton dynamics make excellent candidates

to be grouped in a hierarchical structure or in a new model building block. This would

greatly facilitate extending the model by adding a for instance a third competitor. The

different options that are provided by Extend to add hierarchy to models will be

explored.

A final improvement relates to proper documentation. For an ecological modeller who is

only interested in simulating the dynamics of competition between these two species for

his own purposes, this model is finished after calibration or validation. However, as soon

as he needs to share the model with colleagues or if he digs up the model one year later,

he needs to invest precious time in finding out how the model works. Why did he use

certain parameters, in which publications did he found these parameters, where on his

PC are the data are stored to calibrate the model, and so on. Also, colleagues that are

interested in elaborating this model by adding different species of plankton and food or

by adding different ecological processes that affect the stocks of biomass such as

reproduction and mortality will quickly experience that the number of blocks on the

model pane will soon become too large. It will become difficult to locate constant blocks

or state variables or to follow flows between the stocks. Models that are distributed

without proper documentation are simply worthless. Extend offers a suite of possibilities

to document the model. Key is to add the information as text to the model blocks

themselves, not to store information in separate documents.

 8

Step2: Calibration of the CoExistenceModel using
the evolutionary optimizer

The next step shows you how to calibrate this model. In this example, the respiration rate

for both species was assumed to be 0.005 h-1, while the other rates differed. In the

example we will calibrate the model by changing these two parameters such that the

model fits to observations made during the experiment. The example can be consulted by

opening CoExistenceModel_v2.mox (Fig. 3). Two more boxes were added to the model

pane. The red coloured box groups the experimental data. By clicking on the input data

model block you can use the option Plot Data. The data describes the biomass of each

species at transfer time (20 hours). In correspondence to the model results, the population

biomass of Bosmina increases under the nominal food conditions while the population

biomass of Daphnia decreases. If you run the model once, two plotters pop up. They

both compare the model results with the data. The model seems to overestimate the

population biomass of Daphnia while the dynamics of Bosmina match the observations

better.

Next, the model will be calibrated using the Evolutionary Optimizer block that resides in

the Generic Library of Extend. We will not explain here how evolutionary optimisation

works. Briefly, it is a method that uses a genetic algorithm to find an optimal solution

given a set of parameters. To start an optimisation process in Extend, you need to place

an Evolutionary Optimizer block on the model worksheet.

 9

Fig. 3. Screenshot of the coexistence model with on the right hand side of the model
worksheet an evolutionary optimizer used for model calibration.

Setting up the objective function in Extend

The next step involves determining which variables in the model need to be optimized. In

most cases, optimization means to minimize a cost or the maximize a profit. In this

model, we will minimize the cost using a commonly used objective function: the least

sum of the squared difference between the observations (the experimental data) and the

model outcome. This sum is calculated using an Equation box and the Accumulate block.

The objective function thus becomes:

MinCost = sum [(DaphniaData – DaphniaModelresults)2

 + (BosminaData – BosminaModelresults)2]

 10

Now, the evolutionary optimizer will try to finetune the respiration rate parameters so

that the model matches as good as possible the data.

Setting up the Evolutionary optimizer

In order for the optimizer to calculate this cost equation, it has to have access to the

accumulation block in the model. This is done by dragging a clones of the desired

variable onto the icon of the Optimizer block. The procedure is:

• Double click on the Accumulation block that contains the variable parameter that you

want to use in your cost equation. The variable of interest Display contents.

• Select the clone tool.

• Drag that variable onto the closed optimizer block on the model worksheet

• The optimizer block will highlight when the cloned variable can be dropped onto it.

If you now double clock on the Evolutionary optimizer block, you will see that the

operation added information about the clone to the Variables table in the Set Cost tab.

Next, use the same procedure to clone the two parameters that will be optimized to onto

the closed optimizer block. These parameters are RespBosmina and RespDaphnia. Both

are assumed to be 0.005 h-1. So double click on the constant block, select the clone tool,

drag the constant value onto the closed optimizer block.

Next, open the evolutionary optimizer block (and if needed, select the Set Cost tab). Now,

you can rename the variables and parameters and enter limit values for the two

parameters (Fig. 4).

• Change the name of Var0 On the row 0 to LSS. Change the name of Var1 to

RespBosmina. Change the name of Var2 to RespDaphnia.

• Enter a minimum limit of 0.002 and maximum limit of 0.008 for the two parameters.

During optimization, the generic algorithm will use this range to sample random

values. Entering a range will tell to the optimizer that these variables need to be

changed in the optimization process.

 11

• Enter the cost function in the textbox: MinCost = LSS. Now, the optimizer will try to

minimize LSS which is the least sum of the squared differences between model

predictions and data.

• Go to the Optimizer parameters tab and click on the Quicker Defaults, Non-Random

Model button. This quickly sets up all the parameters for a non random model (no

random input generator was used), but it limits the number of samples that is taken.

• Click on the Results tab to start the optimisation by clinking on New Run.

Fig. 4. Optimizer dialog Cost tab for the coexistence model.

After some time, the optimizer comes to a convergence of >95% and the optimization was

successful. Note that the original parameter values for respiration rate (0.005) are now

replaced by slightly different values so as to minimize the cost function. The respiration

rate of Bosmina virtually stayed the same but the respiration rate of Daphnia is now

0.0041 h-1. If you run a new simulation of the model (control + R) you will see that the

model now fits the data quite well. We will use these new parameters for subsequent

simulations.

 12

This ends the calibration process. Note that another other example of optimisation can be

found in the Extend User’s Guide on page E238. This example shows how to optimize

profits of revenue.

Step 3. Model hierarchy and the reuse of model
parts as model building blocks

Adding hierarchy to the model

If you take a look again at Fig. 3 , you may notice that the model worksheet is almost full

with model blocks, connection lines, data and a plotter. If you would add more blocks,

the worksheet becomes larger and you would need the scrollbars to navigate through the

model. Clearly, this does not improve the readability of the model. It is time to add

hierarchy to the model by encapsulating parts of it into an Extend H-Block or by

designing a more generic Extend block. The coloured boxes that group certain model

blocks and connection lines suggest already a good candidate for a hierarchical block. As

an example, hierarchical blocks were made for each state variable in the model. The result

of this exercise is saved as CoExistenceModel_v3.mox (Fig. 5).

When selecting model blocks for inclusion in a H-block, make sure that inputs and

outputs into the hierarchical structure are not selected. For instance, the hierarchical food

block does not include 4 inputs and 1 output variable.

Also pay attention to the fact that apparently an model output is used as an input. In both

the Bosmina and the Daphnia block the output is connected to the input (using the

controls “Bosmina” and “Daphnia”). This is possible since the output variable that is the

result of calculations during the previous time step is used as input variable during the

next time step. The intergrate block of Extend solves numerically the differential

equations. Here, the option Forward Euler integration was chosen in the dialog of the

Integrate block. The numerical scheme that is used to solve the equation for Bosmina is:

Bosmina(t) = Bosmina(t-1) + timestep × d[Bosmina(t-1)]/dt

 13

Clearly, the biomass of Bosmina calculated during t-1 is used as input to calculate the

biomass of Bosmina during the timestep t.

Fig. 5. The coexistence model summarized in hierarchical H-blocks.

The result of assembling different blocks into a hierarchical structure is that the model

becomes more compact. Any new user can clearly identify tree key players in the model:

food, Bosmina and Daphnia. In Fig. 5 the connections or the feedbacks and the inputs

between the two plankton species and the food source are not explicitly drawn. In stead,

text labels such as Food, Daphnia or IngestionBosmina, were used to provide the

connections between the blocks.

Removing duplication

It was already pointed out that there is some duplication in the coexistence model.

Essentially, the dynamics of Bosmina and Daphnia are identical. Only other parameters

were used. It would therefore be interesting to rewrite the model such that the dynamics

of plankton are captured in a single block rather than in two blocks. The single block can

then be fed with different parameters, depending on which species you need to model.

There is a clear advantage to this procedure. You would save time in constructing a new

model for each species that you need to bring in in the model. Further, the new block can

be stored in a library and called later by you or by other modellers. Experienced

programmers would use a function in Matlab or a subroutine in Fortran. Extend provides

two methods for the construction of more generic blocks. Both methods are illustrated

here.

 14

A generic H-block for plankton dynamics

Making a sub model such as the Bosmina dynamics more generic corresponds to

removing all the features from the model that are specific for Bosmina. Notice that, by

collecting the different blocks into the Bosmina hierarchical block, already some specific

features were left outside the H-block. The input of food was excluded. The reason for

this exclusion is obvious. The food comes from outside the “Bosmina system”. It is not

generated from within. Changing food conditions alters the food concentration (mgC L-1).

This change needs to be communicated to the Bosmina block via the input connector.

The parameters that are specific for Bosmina are the assimilation constant, the maximum

grazing rate, the half saturation constant, the respiration rate and the initial conditions. In

fact, these parameters are specific to any plankton species. These parameters will be

transferred to a user dialog (or interface). If this step is performed, the Bosmina block will

become a zooplankton block with a dialog in which the user can enter species specific

parameters. We will store this block in a new library so that it can be used for other

models or applications. Unfortunately, Extend does not attach a typical dialog to

hierarchical blocks as it does for new blocks. As an alternative, the cloning tool can be

used to communicate with the hierarchical zooplankton block.

First, we made a new library by clicking on New library in the Library menu. The library is

saved as CoExistenceModelLibrary and contains the generic H-block

‘PlanktonDynamics’.

Next, the Bosmina block was saved in the CoExistenceModelLibrary by Alt + clicking on

the Bosmina H-block . This opens the block structure. Now you can save by clicking Save

block to library from the File menu.

The following step is to change this block. Using google, a picture of plankton species

was copied and pasted in the structure pane of the block. Some explanatory text was

added. Proper documentation is the focus of the next paragraph, so the text is limited

here. Using the cloning tool, we cloned the five parameters of interest into the model

pane together with labels to identify the parameters.

The result of these steps is presented in Fig. 6. The new block resides in the new library. If

you drag the block from the library onto the model worksheet and you double click on it,

the dialog becomes visible. You can not enter parameters for other species or use the

 15

default parameters. Notice that a shortcut was made to connect the biomass output with

the biomass input. This connection does not have to made anymore. As a result, the new

block counts only one input connector, where the food goes in.

Fig. 6. Left. Structure window of hierarchical PlanktonDynamics block. Right.
Application of the new generic H-Block in a new model simulating the coexistence
dynamics of four species.

Fig. 6 also shows an application of the new generic block ‘PlanktonDynamics’ that resides

in the library. Now, the coexistence of four species feeding on the same resource is

modelled. Each time, we used slightly different parameters using the dialog with cloned

parameters. Notice that we also changed the food block so that it can handle inputs from

more than two species. You can explore this model in CoExistenceModel_v4 or add

species by opneing the CoExistenceModelLibrary and drag more plankton blocks to the

model worksheet.

A new block in ModL code to simulate the plankton dynamics

More experienced modellers may wish to implement the equations that describe the

dynamics of the plankton in a culture directly in ModL code, the C-like programming

 16

language of Extend. Creating a new block using code rather than assembling all the

model blocks in a hierarchical H block allows to make optimal use of the dialog features

that Extend offers. The Extend developer’s reference contains an excellent example to

build a new block and in fact, implementing the plankton dynamics into a new block is

quite easy.

Firstly, recall that the dynamics of the plankton are solved numerically using forward

Euler integration. Let’s illustrate Forward Euler integration using the dynamics of

Daphnia:

Conceptual model:

(1) Change in biomass = Biomass assimilated by the population – Biomass respired by the population

Mathematical model:

(2) d[Daphnia]/dt = AssRate × IngRate × [Food/(Food+ks)] × [Daphnia] – RespRate × [Daphnia]

Numerical solution using the Forward Euler integrator:

(3) [Daphnia]t+1 = [Daphnia]t + ∆t × d[Daphnia]/dt (where ∆t is the time step of the model).

Substituting equation (2) into equation (3) yields a solution for the variable [Daphnia] provided that

the start value for the Daphnia biomass [Daphnia]t=0 is given.

The numerical solution of equation (3) can be implemented directly in Extend as ModL

code. The parameters of the model can be implemented as dialog items so that they can

be changed by a user. The following procedure was used to make a model block

simulating the plankton dynamics. A detailed step by step procedure can be found in the

Developer’s reference on page D41.

• Choose Build new block from the Development menu. Name the block “PlanktonTank”.

Open a designated library (here the CoExistenceModelLibrary). Click on Intall in

Selected Library. To view the structure of the PlanktonTank, click on it while keeping

the Alt-key down.

• The dialog window and the structure window open. First, the parameters can be

added to the dialog window. This can be done by selecting New dialog item from the

Development menu. Choose static text for adding explanatory information or choose

Parameter to add a user parameter box. In total, five parameters were added: a

starting value, three parameters for the feeding process and a parameter for

respiration. Some additional text was added to the dialog to provide information.

 17

• Once parameters are named and added to dialog, they appear as Dialog names in the

structure window on the left. You do not need to declare these variables as reals,

integers or strings in the code.

• The default icon is a rectangle, situated in the top left corner of the structure window.

You can copy and paste any figure here. Use the Icon tools command on the taksbar

of Extend to add inputs and outputs. Names of Inputs should end on “In”. Names of

Outputs should end on “Out”. For instance FoodIn is a valid input name;

PlanktonOut is a valid output name. Again, you do not need to declare inputs and

outputs in the code if you use the Icon tools button. In our plankton model, three

connectors were placed next to a picture of a Bosmina.

• Next, the code is completed. The code for this block is very simple. First, one more

variable needs to be declared: dContents. Next, the simulation starts by the message

on simulate. At the start of the simulation (currentstep = =0) the biomass of the

plankton (ContensOut) is equal to the startvalue (StartContents). For all other time

steps, the numerical scheme is presented. First, the ingested food is calculated

(IngestionOut); the next line corresponds to equation (2) while the last line is

equation (3). The variable deltatime is a global variable in Extend. It is equal to the

timestep which can be changed by the user by selecting Simulation setup from the Run

menu.

// Declare constants and static variables here.

real dContents;

// This message occurs for each step in the simulation.

on simulate
{

 if (currentstep == 0)
 {
 ContentsOut = StartContents;
 }
 else
 {

 IngestionOut = MaxIng * FoodIn / (FoodIn + ks) * ContentsOut;

 dContents = Assimilation * IngestionOut - RespRate * ContentsOut;

 ContentsOut = ContentsOut + dContents * deltatime;
 }
}

• To conclude, we used the message handler “on createblock” to add default values for

the parameters.

 18

The resulting dialog and the model structure are pictured in Fig. 7. The block is used in

another model simulating the dynamics of three hypothetical species

(CoExistenceModel_v5.mox). This model can only be used if the library that is holding

the PlanktonTank block (CoExistenceModelLibratry.lix) is installed in de folder

Extend6\Libraries.

Fig. 7. Structure of the model block PlanktonTank. Left. The dialog that was created
containing the parameters of the model. Right. The model code.

 19

Step 4. Documentation of the model blocks and the
model

The newly created Extend block ‘PlanktonTank’ is now available for any user of Extend

who disposes over the library CoExistenceModelLibrary.lix. This library can be put

online, it can be downloaded and it can be installed into the folder Extend6\Libraries.

However, as the model block stands now, it still needs documentation. Potential users of

this plankton block need to be explained what the block is actually doing. Some users

will need to be convinced that the parameters that are used to describe the model are

valid and checked. Other users will only be convinced to use this block is they are sure

that the model is able to make accurate predictions that are validated against a set of real

world observations.

In this paragraph, we will briefly explore the opportunities that Extend provides to

document this model block. A standardized Spicosa methodology of documentation of

both model blocks will be presented in deliverable D8.4. In this example, we will show

how the document the two model blocks that reside in the CoExistenceModelLibrary.lix.

We also give hints on how to document a model.

Documentation of the Help function of the Extend blocks PlanktonTank and

PlanktonDynamics

If you drag an Extend block onto the model worksheet and you double click on it, the

model dialog opens. All Extend blocks whether they are hierarchical H-blocks such as

the PlanktonDynamics block or coded blocks such as the PlanktonTank block have a help

button in the lower left corner. The help function contains a short description of what the

model block does, a description of the dialog items and a description of the connectors.

Each block should contain this information so that users are able to implement the block

in their models. If you open the help function of the two different plankton blocks, you

will notice that they are empty. To illustrate the documentation process, a new library

was made (CoExistenceModelLibraryDocu.lix) and the two model blocks were copied to

that library. They were given different names as well.

 20

The following procedure is used to document both model blocks

• Open the structure of the model.

• Replace the default help text in the help pane with the documentation.

Note that we added a short introduction and that we explained all the parameters and

connectors. We also added names to the connectors using the text tool.

We also used some additional features that come with Extend if you make a model block

using the ModL code. If the model block structure window is open, you can add extra

information by selecting Defining new tab from the Develop menu. If you open the dialog of

PlanktonTank model block, you will see that the dialog contains two tabs: Model dialog

and Concept. The Concept tab describes very briefly the conceptual and mathematical

model. In addition the model code itself was updated by using the “//” operator.

Application of the double slash in the code window will turn the text into red and can be

used for commenting the model. Open the structure of the model and check how the

code was commented.

