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Abstract. Kenfig NNR (National Nature Reserve) is a coastal
sand dune system in south Wales, UK. The site is an important
location for the conservation of the fen orchid Liparis loeselii,
a significant proportion of the UK population is found solely
on the site. Approaches to the mapping and monitoring of the
habitats at Kenfig NNR using EO (Earth Observation) meth-
ods are investigated.

Typical airborne EO missions over such sites produce more
than a single source of EO data; these may include various
optical imaging sensors with different spectral ranges, film
cameras and ranging devices to measure topography.
Conservation managers are thus presented with the problem of
which sources of data to use when producing a land cover map
of the site of interest.

Using a data set gathered over the Kenfig NNR site, we
investigate land cover mapping methods for conservation. The
land cover types of interest typically cover small areas within a
much larger site so they present a hard problem for the EO data
and associated classification methods to solve. Land cover
classifications produced from the data sets provide a set of
competing hypotheses of land cover type for the site.

Methods we use to resolve this competition between the
data sets include voting methods, data fusion methods and a
method utilising fuzzy logic to aggregate information. This
paper is intended to act as an introduction to some of the issues
involved in using EO data for habitat mapping in highly
heterogeneous coastal dune environments and to present some
preliminary results of the performance of each method.

Keywords: Dune slack; Kenfig NNR; Liparis loeselii; Veg-
etation survey.

Abbreviations: ATM = Airborne Thematic Mapper; CASI =
CCW = Countryside Council for Wales; Compact Airborne
Spectrographic Imager; EO = Earth Observation; cSAC =
candidate Special Area for Conservation; NNR = National
Nature Reserve; OWA = Ordered Weighted Average; SSSI =
Site of Special Scientific Interest.

Introduction

As a cSAC (candidate Special Area for Conserva-
tion), there is a legal requirement for the monitoring of
the reasons for notification of cSAC status at Kenfig
NNR. This is under the European Union’s Council
Directive 92/43/EEC of 21 May 1992, more commonly
known as the EU Habitats Directive. Furthermore, un-
der the UK’s Wildlife and Countryside Act (HMSO
1949, 1981) Kenfig has both NNR (National Nature
Reserve) and SSSI (Site of Special Scientific Interest)
status. Both of these designations also have legal re-
quirements to monitor the status of the site in terms of its
conservation value.

The use of EO data in mapping and monitoring
coastal habitats to comply with conservation legislation
has several potential advantages over traditional meth-
ods. The latter, typically ground based survey, have two
main drawbacks, speed of execution and repeatability
(McGwire 1992). EO methods solve both of these prob-
lems whilst introducing some of their own. It is for
conservation managers and practitioners to decide if the
benefits of using EO data outweigh the drawbacks.

Whilst not removing the need for ground based
survey, EO data used for mapping and monitoring
purposes do repay the initial effort with a fast repeatable
method of land cover estimation over a site, free from
problems associated with different human surveyors.

Typically providing complete coverage over a site,
EO data are capable of producing a detailed land cover
map over the area of interest. Due to the usual highly
heterogeneous distribution of the land cover types in
coastal systems there is a requirement for high spatial
resolution data (better than 5 m in a UK coastal dune
system) if a derived land cover map is to adequately
represent the true nature of the coastal dune habitat mo-
saic. Until recently, space-borne sensors suitable for map-
ping land cover in natural and semi-natural areas are
relatively coarse resolution (20 to 30 m).

More recently imaging platforms, such as the
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IKONOS platform, offer data of 1 m resolution; the data
are limited in their spectral resolution however. High
spectral resolution is another requirement of accurate
land cover mapping, particularly in coastal areas, as the
land cover types are often similar spectrally and may
only be distinguished using data with a high spectral
resolution. For these reasons airborne sensors (capable
of easily obtaining data better than 5 m resolution) were
used in this study to produce land cover maps of Kenfig.

Due to the way in which natural and semi-natural
areas develop throughout the growing season, it may
be advantageous to acquire image data at more than
one time in the year. Traditionally EO surveys of vege-
tation particularly have been undertaken during summer-
time, when higher plants are in flower. More informa-
tion on land cover types may be acquired during the
seasons of winter, spring or autumn

It is often easy to mount more than one imaging
system on-board an aircraft when carrying out a survey
of an area. Indeed, due to the high fixed costs involved
in carrying out an airborne survey of an area, the extra
cost of mounting more than a single imaging system on
board an aircraft for such a purpose is negligible. After
such a survey has been carried out there are therefore
two or more data sets for analysis.

As a result of all this, quite often there may be
multiple data sets available for analysis for a given land
cover mapping exercise in a coastal area.

When one is faced with this situation, what should
conservation managers and practitioners do with the
separate EO data sources? It is possible to analyse just a
single data source and produce a single land cover
classification. This has the unfortunate consequence of
ignoring all the information contained within the other
sources available. It is also possible to analyse each
data source available and produce a number of land
cover classifications. This has an equally undesirable
consequence, that of which land cover classification to
utilize in a monitoring and mapping exercise. A third
alternative is to analyse each data source together and
produce a single, or consensus, land cover classification.
The purpose of this paper is to investigate methods of
achieving this latter option in the hope that an improved
land cover classification will be better than any of the
classifications produced from a single source.

The hypothesis investigated is therefore, that by
combining data from multiple sources, from multiple
times during the year, a better land cover classification
may be derived than from any single source alone.
Throughout the rest of this paper we will discuss com-
bining data and information. Sources referred to will be
image data from different sensors at different times of
the year.

Site description

Kenfig NNR is a coastal sand dune system, on the
south coast of Wales, between the cities of Cardiff and
Swansea, in the mouth of the Bristol Channel. It is
situated just to the south east of a large steel works at
Port Talbot, and is bordered all along its north eastern
edge by a major motorway. The southeastern boundary
is a golf course and farmland and the southwestern edge
is the coast.

The site is approximately 4 km long and 2 km wide,
totalling over 600 ha. Most of the site is covered with
relatively old, inactive dune formations. Habitats on the
site are mostly typical dune types, some of the more
mature dune systems on the most landward edge of the
site are particularly mature woodland and bear little
resemblance to coastal dune vegetation.

Consisting mostly of dune ridge and dune slack
vegetation (dune slacks are the flat areas on the seaward
side of a parabolic, landward moving, dune ridge) as
well as much dune grassland, the dunes contain habitat
representatives relatively rare on a UK and European
scale. The younger humid dune slacks are typical of
more active dune systems and their presence at Kenfig
NNR is the major reason for its notification and
protection under the various forms of legislation. Kenfig
NNR is one of the best sites in Wales for the presence of
these humid dune slacks (Natura 2000 code 2190: hu-
mid dune slacks). The site hosts around 3/4 of the UK
population of the fen orchid, Liparis loeselii and is an
important site for the petalwort Petalophyllum ralfsii
(under Annex 2 of the EU Habitats Directive). The site
is managed by Bridgend borough Council, on behalf of
CCW (The Countryside Council for Wales, Cyngor
Cefn Gwylad Cymru).

Photographic evidence from the 1940s, 1950s, 1960s
and 1970s (see Fig. 1) shows that there were significant
areas of open sand (ca. 30-50%) during the 50 years
before 1997. Due to the increasing maturity of the site
since the 1940s, open sand no longer covers much of the
site, an approximate estimate would be less than 5% by
area. The general consensus amongst those responsible
for site management is that it is likely that the amount of
humid dune slack on the site has also decreased during
this time.

Also present on the site is a large natural lagoon, the
largest in south Wales. This is also a proposed feature
for notification of cSAC status (as an example of Natura
2000 code 3140, hard oligo-mesotrophic waters with
benthic vegetation of Chara spp. Running the whole
seaward length of Kenfig NNR, just on the landward
side of the principal dune ridge, is a derelict tarmac road.
The fact that this road is not inundated with sand is a
clear indication that the contemporary landward trans-
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port of sand onto the site is minimal. This fact also
suggests a reason for the lack of contemporary dune
activity at the site.

The usual procession of vegetation types in the
slack habitats is from bare sand to a low growing sparse
assemblage of Salix repens (Creeping willow) with a
covering of lichens, liverworts and moulds, giving a
dark appearance to the sand substrate. During the winter
these damp slacks flood with water, sometimes up to a
several metres deep. This regular flooding during winter
helps to keep the vegetation in this state. Over time, the
species begin to change in their representation in the
assemblage, giving way to more vascular plants with a
denser cover and more soil development. This process
is restarted with new dune formation as a result of storm
damage to mature dunes or inundation with blown
sand. It is assumed that both of these processes have
been much reduced at the site since the late 1940s.

It is these processes of succession that threaten the
rare habitats on the site. The condition of the humid
dune slacks at the site is a current cause for concern for
the managers of the site. It was this concern that was the
stimulus for this current research.

Contemporary management at the site has concen-
trated on removal of the vegetation and top few
centimetres of soil in the more mature dunes using earth
excavation equipment. Agreements with the local steel
works for the loan of caterpillar tracked bulldozers, and
dumping of topsoil on the spoil heaps of the works has
helped in this regard (C. Hurford pers. comm. 2004).
Rhizomes of Liparis loeselii subsisting in the soil/sand
substrate below this level then have a chance to regrow
in the subsequent growing seasons.

In order to assess the success of this and other
management at the site, some means of monitoring the
site is required. We hope to show that EO data may be
used as part of this process.

Data and data processing

The two optical data sets used in this study, CASI
(Compact Airborne Spectrographic Imager) and ATM
(Airborne Thematic Mapper) were acquired on-board
the NERC (Natural Environment Research Council)
aircraft. This platform is equipped with DGPS (Diffe-
rential Global Positioning System) and an inertial navi-
gation system to simultaneously acquire aircraft attitude
and position information with the image data. NERC
supply the raw image data, together with this platform
positional data, and an application program to correct
the image data for errors in platform attitude. The cor-
rection for attitude is, at the time these data were ac-
quired, more accurate than the absolute positional accu-
racy. As such, geometric errors in the data are better
corrected than absolute positional errors.

The CASI and ATM data were acquired on two
separate flights, one in May and one in August 1997.
Both sensors were flown on both flights, producing
four separate image data sets.

The ATM instrument was mounted on a flexible
mounting, allowing up to 15° of movement in the across
track direction. The CASI instrument is rigidly mounted
in the aircraft platform. This means that the ATM data
initially has fewer geometric errors than the CASI data.

When inspecting both the CASI and ATM data
initially it is clear that there are variations in the radiance
values in the across track direction. This is due to the
anisotropic reflectance of the land surface imaged by the
sensor. The shape of the function describing this
anisotropy (termed the BRDF, or Bi-Directional Re-
flectance Distribution Function) may be complex but in
this case, the major variation is an increase in brightness
in the across track direction away from nadir. This may
be adequately characterized by a second degree polyno-
mial function, and the gross effects therefore removed.
This was done for the image data using the ENVI image

Fig.1. Comparison of area of open sand. Left
image from 1971, right image from same area
in 1997.
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processing software. Although variations in image bright-
ness are still apparent (see Fig. 3), they are somewhat
reduced.

After this simple geometric and radiometric correc-
tion, the separate image strips covering Kenfig NNR
were mosaiced together, producing a single image for
each imaging sensor, for each date (four optical image
data sets in total).

LIDAR (LIght Detection and Ranging) data were
also available for the Kenfig NNR site. These data were
made available to CCW by the UK Environment Agency
(see Fig. 2, taken from midway down the coastal edge of
the site). The LIDAR data are usually supplied either in
the raw (x,y,z) triplet, or an already interpolated grid of
data. In this case the LIDAR data for the site were
supplied in the raw triplet form and were interpolated to a
regular grid using the ArcView GIS software from ESRI.

To increase the utility of the elevation data, a land
form classification was then produced. The method is
after Wood (1996). The basic procedure is to classify
each pixel into one of the following six classes (the
extra band of information in the elevation data set is
therefore a categorical variable); peak, ridge, pass,
plane, channel and pit. The classification is done on the
basis of the local surface neighbourhood of the input
pixel. The partial derivatives of a polynomial fitted to
the surface in the x and y directions are calculated, and
the classification made on the basis of this and a set of
rules. This and further processing to retrieve aspect
and slope was carried out using the ENVI image
processing software from Research Systems Incorpo-
rated. The resulting topographical data set consisted of

a 4-band image, band 1 being the elevation data for
each 2-m pixel, band 2 being aspect, band 3 was slope
and band 4 topographic category. This data set is
therefore a mixture of continuous and categorical data.
The continuous data further being a mix of both approxi-
mately normally distributed data (elevation) and heav-
ily skewed (aspect and slope).

All data were interpolated to a 2-m grid cell (pixel)
size to ensure they, and any derived image products,
could be directly compared to each other spatially.

The ground truth data were acquired during the
period between 1997 and 2000. Where possible, DGPS
positional data for the ground truth data were
simultaneously acquired. The ground truth data acquired
were floristic data recorded for a 1-m2 quadrat. The
recorders were all experienced botanists so that inter-
recorder differences would hopefully be minimal. The
final land cover map is therefore still subjective, but it
is repeatably so. This is not the case with a land cover
map derived entirely from land based survey as the
initial data collection fully determine the final land
cover map. This is in contrast to the case of using EO
data to derive a land cover classification where the
image data may be re-analysed using alternative ground
truth data and the results compared.

Accurate co-registration of image data sets and
ground truth data is critical for the purposes of using
such data to train most image classifiers (Congalton
1991). Furthermore, for all the methods of data and

Fig. 2. Aspect, derived from LIDAR DEM.

Fig. 3. TM mosaic of Kenfig NNR.
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information fusion outlined in the next section to be
applied to these data correctly, each data set must be
adequately registered to each other data set. This is to
ensure that the land cover class for a given pixel in a
given data set is representing the same area of the study
site as the conjugate pixel in every other data set. The
effect any misregistration has on the results of the ex-
periments carried out here is discussed further in the
Methods section.

Data set co-registration was carried out by firstly
correcting each data set using the supplied correctional
software. Subsequent to this, each data set was co-
registered to the May ATM data using a network of
ground control points. This procedure was followed as
it meant the minimum of corrections applied to each
image to achieve co-registration of every data set.
Operators equipped with DGPS equipment often
gathered the ground truth data. This facilitates the co-
registration of these data with the image data. Both the
quality of classifier training and the assessment of clas-
sifier accuracy may be adversely affected by an inability
to accurately associate ground truth data with image
data (Congalton 1991).

Methods

Methods to make use of information from multiple
sources split easily into two main categories, data fusion
and information fusion (Thackrah 2001). The former is
the process by which data from multiple sources are
combined in a single, synthetic, data set to be analysed
singularly. Information fusion, by contrast, involves
the separate analysis of each constituent data set,
followed by some means of combining the results of
each. In the case of land cover mapping using classified
image data, the former case is realized by simply con-
structing a synthetic data set of the data values of all the
sources. In the latter case the classifications of each data
source are combined to produce a single, or consensus,
classification.

Only one method of data fusion is investigated here,
the synthetic data set method. In order for the elevation
data to be utilized as well as the image data, a non-
parametric classifier must be used however. A paramet-
ric classifier will perform poorly when given categorical
data as well as continuous data, or when the data are not
all distributed identically in the same multivariate model.
The elevation data set consisted of various measure-
ments, some of which are normally distributed, some of
which were not. In this case, a typical parametric classi-
fier, such as the maximum likelihood classifier, would
not classify the data set well. The non-parametric classi-
fier chosen for this was an artificial neural network.

A simple multi layer perceptron ANN was used in this
study, with error back propagation and fixed learning
rate and momentum terms after Rumelhart et al. (1986).
The ANN was trained using the same training data as the
maximum likelihood classifier on the optical data.

As a first step in investigating methods of informa-
tion fusion, the four optical data sets were classified
separately, using the available ground truth data. This
produced a set of constituent land cover classifications,
one for each source of EO data. The maximum
likelihood classifier was chosen for this purpose as it is
widely available in many image processing software
packages and is the most likely method to be utilized by
conservation professionals undertaking such work. Both
the final classifier output and the a posteriori probabili-
ties of class membership (Foody et al. 1992) results
were produced. These results are to be used as inputs to
the various information fusion methods described next
to derive a single consensus classification from the four
constituent classifications. The elevation data set was
also classified on its own, using the ANN method due to
the presence of categorical data within it, and was also
used as a constituent classification.

Data set registration

The main difficulty, with the use of EO and data or
information fusion and with the use of ground truth
data in classifier training is accurate data set registration.
The constituent data sets must be registered accurately
to each other. If this is not the case then errors in the
resulting classification may be a result of misregi-
stration, rather than the fault of the classification or
fusion process (Congalton 1991). It is difficult to
adequately geocorrect and co-register high resolution
data sets acquired by airborne sensors. By adequate, it is
essential that such data sets are co-registered to within
one or two pixels. In the current case, the co-registration
accuracy was of the order of 7 or 8 pixels.

To provide an approximate idea how this level of
error would effect subsequent analyses, a sample
classification was misregistered with itself by up to
seven pixels. Using one as a base classification and the
other as a ‘ground truth’ classification, the inter-classifi-
cation accuracy was calculated. The results are shown in
Table 1. As can be seen from the small number of
examples in the table, the misregistration had a large
effect on classification accuracy in each case. It must be
remembered that this is the result of misregistering the
same classification with itself and the best result was
that the two classifications had 20 % of the pixels in
error.

This effect is particularly severe in the coastal sys-
tem studied here, as the distribution of land cover types
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is highly heterogeneous with proportionally high num-
bers of edge pixels for each habitat type. This large
number of boundary pixels leads to significant inter-
classification error when misregistration occurs. More
homogenous environments would be less affected by
registration errors. With such a high degree of classifi-
cation error expected purely from misregistration, it is
hoped that there may still be quantifiable gains made
by the various data and information fusion methods
proposed.

By identifying if the methods of data and information
fusion work at all well in a coastal system, more
homogenous habitats, such as moorland or woodland
areas, are expected to be more suited to the methods
described.

There is a number of alternative methods for
information fusion. Voting methods are perhaps the
simplest. Averaging methods are another alternative
and more advanced methods based in the field of fuzzy
logic may also be employed. Voting methods are dis-
cussed in the next section.

Voting methods

Voting methods use the so-called ‘crisp’ output of a
classifier (Foody 1999), that is the final class of a pixel
as output from most classification methods. The available
data sources are all classified individually and the class
of each pixel recorded in an output image as an integer
value. The classifications are then registered with each
other resulting in a stack of images where for each pixel
we have the suggested land cover type for each classified
data source.

The two main voting methods are majority and
plurality rule both of which are very simple and have
very quick processing times given a set of input images.
The plurality rule simple assigns a consensus class to a
pixel that is the output of most of the individual classifi-
cations. Majority rule is identical to the plurality rule
with the proviso that if the votes for the most popular
class do not exceed 50%, a ‘Not Classified’ status is
assigned to the pixel. The advantage of the latter case is
that uncertainty (exemplified by more than 1/2 the indi-

vidual input classifications disagreeing) is explicitly
propagated to the final classified product (albeit in a
rather unsophisticated manner). The plurality rule ig-
nores any uncertainty in the input classifications and
produces a consensus class for every pixel in the output
image.

A drawback with voting methods is their equal
weighting of each members vote. The advantage of
voting methods as decision making agents in a political
democracy, that each vote counts the same amount, is a
disadvantage in this case. We may know, for instance,
that a particular source of information is more accurate,
either overall, or in specific class cases, than another. In
this case, the votes from that source are weighted exactly
the same as all other sources, this is not a desirable
feature of the method.

Ordered Weighted Average operators

OWA (Ordered Weighted Average) operators are a
flexible class of operators that may replicate the
operation of other aggregation operators (Yager 1988).
Yager refers to the process as aggregation, though
throughout this paper it has been referred to as fusion,
throughout this section only, the term ‘aggregation’
will be used after Yager’s usage. This class of operators
are capable of performing aggregations of data organ-
ized in vectors in a similar manner to many other aggre-
gation operations (Yager 1988, 1998). It is easy to show
that an OWA operator may perform an aggregation in
the same way as the median, mode and mean operators
perform aggregations. This flexibility is seen as a strength
of this class of operators. OWA operators may also be
shown to simulate the AND and OR (which are also
equivalent to the MIN and MAX operators respectively)
logic operators on fuzzy sets. Furthermore they may also
be constructed to show different degrees of AND-ness and
OR-ness. Using this class of operators one may perform a
variety of aggregations on the same vector of data.

(1,0,0,0) × (3,1,1,1) (1)

Shown in Table 2 is the example output from four
separate classifications. In this case they are classifi-
cations of four different data sets by the same classifier.
They may also be classifications of the same data set by
four different classifiers, or four sets of training data.

The numbers represent the partial output that most
classifiers produce. They may be the a posteriori class
membership values produced from the maximum
likelihood classifier or the output activation values of
an ANN classifier for example. The output from the
maximum likelihood classifier for the first case above
would be class 2.

Table 1. Classification accuracy for misregistration experiment.

Iteration Offset (x/y) Classification Khat
number accuracy (%)

1 1/1 81.24 0.79
2 8/8 71.87 0.56
3 0/3 71.14 0.65
4 3/0 78.29 0.66
5 6/4 73.78 0.59
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A simple way to use the method proceeds as follows.
The test vector to be operated on is first ordered such
that, n1 ≥ n2… ≥ nx, and then multiplied by an aggrega-
tion vector of equal dimension to return a single value,
thus performing an aggregation of the values in the test
vector. The values in the aggregation vector are chosen
depending on the aggregation desired. The example
shown in Eq. (1) is the plurality rule (tied results are
represented by a figure for each of the tied classes,
giving a count of 1 for each of the other classes) for the
data shown in Table 1. The value returned is class 4, as
this is the class with the three votes from the system
shown in Table 2.

A more complex way to use OWA operators is to
form a vector for each class made up from the classifier
outputs of each classifier for that class. These (in this
case four) vectors are then multiplied by the chosen
aggregation vector, producing a single vector with four
members (one for each class, not classifier). This
resulting vector is then multiplied by the MAX or OR
vector – the first vector in Eq. (1) – and the result
returned as the output of the system for that pixel.
Again, the method is simple and proceeds quickly when
applied to co-registered image data.

Using two consecutive MAX operators would return
the class in the consensus image that had the highest
single a posteriori value in the constituent classifi-
cations. Using the data from Table 1 this would be
either class 2 or 4. Using a mean aggregation operator –
Eq. (2) – followed by a MAX operator would return the
class with the highest average a posteriori value in the
constituent classifications. Again, using the data in Ta-
ble 2 this would return class 4 as the consensus class.

Many different aggregation vectors can be used, the
four most common are the mean, median, MAX (OR)
and MIN (AND) operators, Vectors shown respectively
below in Equations (2), (3), (4) and (5).

(0.25,0.25,0.25,0.25) (2)
(0,0.5,0.5,0) (3)
(1,0,0,0) (4)
(0,0,0,1) (5)

The values in the first two cases are 1/n (Eq.  2) when
the number of classifiers is n and 1 or 0.5 when the
number of classifiers are odd or even respectively. The
size of the vectors is altered to be n when the number of
classifiers is n.

In contrast to the case with the voting methods, this
method of information aggregation does not assumes
that each source is weighted equally. In this case there
exists the possibility to differentially weight the sources
however. It is possible to weight the members of the
OWA vector according to the expected ability of each

classifier to classify pixels into a particular class. This
would be done on an ad hoc basis and there is no
particular justification for any one given weighting
strategy.

The OWA operators used in this study were the
mean, median and MAX on the constituent vectors for
each class in the system, followed by a MAX to return
the consensus class.

Fuzzy integral fusion

Fuzzy integrals, first proposed by Michio Sugeno
(Sugeno 1974, 1977), provide an explicit means by
which the different abilities of each constituent classifi-
cation to identify each class may be taken into account
in the information fusion process. The method will not
be discussed in detail here, see Cho & Kim (1995), Lee
& Lee-Kwang (1994); Tahani & Keller (1990); Thackrah
et al. (1999, 2000) for details of its implementation in
information fusion for image processing. The technique
has successfully been used in image processing, particu-
larly in target recognition applications. The use of it in
other information fusion applications has been reviewed
for the operational research community by Grabisch
(1996) however its use in land cover mapping is a novel
application.

In brief, the method proceeds as follows. The con-
stituent data sets are each classified separately, as in the
previous methods. The accuracy of each classifier in
identifying each class is then determined using the avail-
able ground truth data. A fuzzy measure for each class,
and a resulting score for each classifier, is then con-
structed using this information. Next, in a similar man-
ner to the use of OWA operators in the previous section,
the vector of classification output for each pixel is
ordered. The fuzzy measure is then used, together with
the information on class membership to arrive at a
consensus class for each pixel in the image.

The fuzzy integral is a method by which the
interaction between classifiers to be fused is modelled in
a more appropriate manner (Grabisch 1996). Instead of
the accuracies of each classifier summing proportion-
ately for the combined system, they may sum dispro-
portionately, particularly where two, or more, sources

Table 2. Example classifier output.

Class Classifier
1 2 3 4

1 0.5 0.4 0.2 0.2
2 0.9 0.1 0.1 0.1
3 0.3 0.2 0.2 0.2
4 0.1 0.9 0.5 0.2
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are expected not to add much more information over a
single source. An example is the case with the optical
data sets. We do not expect the accuracy of the emergent
classification from the combination of two constituent
classifications to be a simple sum of the accuracies of
each constituent classification. More likely is a small,
disproportionate, increase in overall accuracy. The eleva-
tion data, despite the poor ability of it to distinguish
between all classes, may well increase the accuracy of the
emergent system in a more disproportionate fashion than
an initial inspection of its performance alone would sug-
gest. In other words, the poorly performing classification
of the elevation data may provide a disproportionate
increase in the emergent classification accuracy than its
performance alone would suggest.

The data sources used for the voting and OWA
methods of information fusion were simply the optical
data sources. Two separate experiments were carried
out using the fuzzy integral for information fusion. The
first utilized the classifications of the optical data only.
The classification results of two optical sources, either
the multi sensor data for the same time of year, or the
multi temporal data for the same sensor, were used
(making four combinations in total). The second experi-
ment utilized these same two sources plus the ANN
classification results of the optical and the elevation data
(again making four combinations in total).

In exactly the same manner as the other methods
already mentioned, this approach requires that each
classification segments the scene into the same classes.
In the case of the elevation data used here, this is not a
straightforward task. The optical data has 12 or 14
bands (for ATM and CASI respectively). The elevation
data set consists of four bands only. Each source of data
was segmented into 16 land cover classes and it is not
expected that a 4-band data set is able to segment a scene
into 16 classes better than a 12 or 14 band source.
Nevertheless it is expected that what little information
the classification of the elevation data set brings to the
final result will be effectively fused using the fuzzy
integral.

An alternative way to proceed is to use the elevation
data to filter the initial classification process. Elevation
data for example may be used as an initial filter to
reduce the potential number of classes that optical data
must discriminate between. A good example in the
current case is the use of elevation data to distinguish
the location of dune slacks. A classification of the
optical data must then only distinguish between the
different dune slack habitats, rather than all the habitats
present at Kenfig NNR. An exploration of this is left for
further work.

Results and Discussion

The results for each class are too detailed to show
here, but instead we show the total areas classified as
each class for each classification and fusion method.

Shown in Fig. 4 is the output of the mean OWA
operator. This is included to show that the classification
of the digital image data segments the scene well and
that the site is highly heterogeneous. It may also be
noted that, by comparison with the image data in Fig. 3,
the segmentation of the scene passes an initial visual
assessment of accuracy.

Classification accuracy assessment

A detailed examination of each classification’s per-
formance was not possible, due to the limited availabil-
ity of ground truth data. All the available data were used
for training the classifiers. When all these data were also
used for classification accuracy assessments, most came
out greater than 95 % accurate. This is not expected to be
a true measure of the classifiers accuracy, but instead
more a reflection on how well the respective classifiers
learned the training data. The unfortunate conclusion is
that the training data were probably not representative
of the area as a whole, which is one of the desirable
properties of ground truth data. It was not rational in this
case to split the training data into separate training and
testing sets; too few data were available. If a representa-
tive training data set were available, then a reliable
assessment of the overall accuracy of the different clas-
sifications could have been obtained by using the same
set to test the resulting classification (Stehman 2000).

The usual method of assessing classification accu-
racy is to produce a confusion matrix. This is a matrix of
values where the columns represent the ground truth
classes and the rows the classifier output. A correctly
classified pixel is added to the total in element (n,n)
where n is representative of the class of interest. Incor-
rectly classified pixels are added to element (n,m) where
n is the ground truth class (the correct class) and m is the
actual output class. An inspection of the confusion
matrix allows detailed analysis of how the classifier
performs on a per-class basis. The Khat statistic
(Congalton 1991) mentioned in Tables 1 and 6, takes
these off diagonal members of the confusion matrix into
account of its measure of classification accuracy in
contrast to the raw accuracy figure that just calculates
the percentage of correctly classified pixels.

The Khat statistic is a measure of classifier accuracy
that takes into account misclassified, as well as correctly
classified, pixels. As such the Khat statistic is a more
realistic measure of classifier accuracy than the raw
percentage of correctly classified pixels (Congalton 1991;
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Congalton et al. 1983; Rosenfield & Fitzpatrick-Lins
1986). For a better assessment of classifier accuracy, the
confusion matrices for each classification should be
inspected. Space prohibits their printing here and the
Khat statistic is included on the understanding that a
single measure of classification accuracy is always going
to be a compromise compared to an inspection of the
confusion matrix. Despite these reservations on classifi-
cation accuracy assessment, the calculated classifier
accuracies are included here in Table 6.

Tables 3-5 show the proportions of each land cover
class produced in the classifications. The classes are
reasonably self explanatory, Pteridium, Phragmites,
Calluna and Calamagrostis being either single species
stands, or stands dominated by those genera respec-
tively. The remaining classes were broad habitat types
based on the site knowledge of CCW staff and the
conservation objectives of the site, mainly the humid
slack habitats. Table 3 shows the results of the voting
method information fusion experiment, the OWA
aggregations and the data fusion experiment. Table 4
shows the results of the 2 (optical) source fuzzy integral
fusion experiment and Table 5 the 3 (optical plus eleva-
tion) source. Table 6 shows the overall classification
accuracy and Khat statistic of each of the fusion experi-
ments.

It may be seen from the first table that the land cover
proportions of each class are relatively stable, even for
the simpler information fusion methods. Approximately
18-23% of the site is covered by young slack habitat.
The dominant habitat type appears to be closed grass-
land, with a wider range of likely coverage at between
20 and 36% of the site. The main land cover types on the
site are thus young slack, young grassland, closed grass-
land and scrub. Young slack is the name given to a slack
a successional stage beyond the humid dune slack and is
of lower conservation value. The cover types, species rich
slack and embryo slack are of high conservation value
and have proportions of 5% and < 1% respectively.

The stable land cover proportions between each
method also support the use of EO in a mapping exercise
in such a heterogeneous semi-natural habitat as Kenfig
NNR. The level of habitat classification exceeds that of
a Phase 1 habitat survey, a nationally adopted level of
biological survey within the UK (Anon. 1993), and
provides a more detailed habitat map than the ground
survey alone was capable of.

The critical habitat type that has high conservation
value, and is essential for the long term presence of
humid dune slacks at Kenfig NNR, embryo slack, shows
up at between 0.5 and 1% of the site. It is expected that
this value was much higher in the past, particularly
during the 1940s and 1950s when the area of open sand
at the site was much larger than presently. If nothing

else, this last figure should provide evidence for the
future designation of the site and increasing importance
placed on its careful management.

The estimates of bare sand using these methods are
typically approximately 2 to 4%. Aerial photography
from the 1940s and 1950s shows subjectively at least
30% cover, it is clear that this proportion has decreased
substantially over the intervening 40 to 50 years.

Tables 4 and 5 again show broadly similar propor-
tions of the constituent land cover types. Perhaps this is
to be expected as they are all based upon the same four
input classifications. The land cover proportions of the
individual classifications, whilst not included here, were
similar. The accuracies of the individual classifications
were also very similar to those of the fused classifica-
tions. Firm conclusions made on an analysis of the
classifier accuracies should not be drawn due to the
uncertainty that the ground truth data represent the site
as a whole.

Subjectively at least however, the fused classifi-
cations displayed a much lower tendency to be affected
by the brightness trends that affect classifications of
single data sets. This is a valuable difference, these
effects are certainly not a result of differences in land
cover type, and are therefore an undesirable artefact in a

Fig. 4. Example classification output, mean OWA operator.
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land cover classification. It may be seen from the classi-
fication in Fig. 4 (the result of the mean OWA aggrega-
tion of all four digital image classification results) that it
shows no banding artefacts that could be associated with
the brightness trends apparent in Fig. 3. The single, non
fused, classification of the image data in Fig. 3 did show
such obvious banding patterns. A more detailed and less
subjective analysis of this is needed to draw firm con-
clusions, however this aspect of the fusion results is a
promising one.

Due to the limited availability of adequate ground
truth data in order to carry out a detailed assessment of
the accuracy of each of the fused classifications, per-
haps the most important conclusion to reach from these
results is the similarity between the different methods. It
may be seen that the general proportions of each land
cover class are relatively stable between all the
classification results. This is important information that
can be used to good effect by the site managers. The
status of the site may be monitored in this way and any
reduction in the area of the dune slacks should be
identified using these methods. Of course, the large
expense of repeated twice yearly airborne missions over
the site may preclude its operational deployment, how-
ever, a mission every few years would be enough to
establish a suitable baseline such that field based
monitoring of the important areas of the site is more
easily accomplished.

It should be remembered that the use of EO data is
not intended to replace the need for land survey in
mapping and monitoring habitats, but rather as a supple-
ment to such actions. As such, the identification of the
proportions of each land cover type as shown here is a
useful addition to the site managers’ knowledge. It is
unlikely that a similar number of land based surveys
would have arrived at such similar figures for the differ-

ent land cover types as the assorted methods of data and
information fusion have done here. They would
certainly have involved the consumption of a substan-
tial amount of resources. Despite the high cost of the
data acquisition, and the need for some ground truth
data, the level of effort required to repeat the analysis
included here is relatively low compared to even a
single exhaustive land based survey.

We do not suggest here that the use of EO data made
the identification of the small area of embryo slack
possible, as it was well known before. What is important
are the relative proportions of the other land cover
types and their distribution; they are much harder to
derive from land based survey. Previous land cover
maps of the site derived from land based survey were
only very broad categories and showed a very
homogenous distribution of the areas of each type. It is
clear that coastal dune systems are not homogenous
(inspect Figs. 3 and 4) and high resolution (spatially and
spectrally) EO approaches may go some way to map-
ping and monitoring habitats within them.

Differences between the ability of the ANN and
maximum likelihood (ML) classification methods to
classify categorical data are shown clearly in Table 6.
The first two rows show the synthetic data set method of
data fusion classified using the ML and ANN methods
respectively. The ML row has the lowest classification
accuracy of any of the methods carried out. ANN classi-
fication accuracy of the categorical data set was amongst
the higher values of all the remaining methods. This
result is expected as the ML method is highly unsuitable
for classifying categorical data; however, it does show
the utility of ANNs for classifying just this sort of data.
A site managed for conservation for any length of time
is likely to have categorical information relating to land
cover in the form of the expert knowledge of the site

Table 4. Class total areas (two sources) (%).

Class May August ATM CASI

Young slack 25.88 21.01 19.15 35.06
Mature slack 7.98 3.36 5.54 2.47
Rank grassland 2.80 4.25 3.80 3.94
Pteridium 1.81 5.79 5.35 1.85
Young grassland 8.53 5.93 5.76 8.65
Species rich slack 1.96 5.60 2.73 1.80
Salt marsh 1.36 1.16 1.10 0.99
Phragmites 0.68 0.43 0.44 0.45
Fen meadow 3.37 0.90 0.82 1.83
Embryo slack 0.13 0.31 0.15 0.30
Closed grassland 30.67 41.93 44.88 31.17
Calluna 0.04 0.00 0.27 0.01
Calamagrostis 7.02 1.09 2.32 3.83
Bare sand 1.01 1.30 1.11 1.37
Open water 3.53 3.53 3.55 3.53
Scrub 3.24 3.40 3.05 2.75

Table 3. Class total areas (%). Fusion = data fusion.

Class Majority Plurality Mean Median Max Fusion

Young slack 17.97 17.97 22.14 23.12 19.76 13.96
Mature slack 3.15 3.15 4.15 4.22 3.89 2.42
Rank grassland 2.76 2.76 3.94 3.99 3.86 8.01
Pteridium 1.95 2.02 3.42 2.92 4.65 1.42
Young grassland 9.41 9.59 10.50 10.47 10.85 12.56
Species rich slack 4.07 4.71 5.17 4.98 5.97 4.70
Salt marsh 1.58 2.23 2.30 1.90 3.81 1.07
Phragmites 0.57 0.83 0.94 0.76 1.48 6.27
Fen meadow 2.21 4.10 3.09 2.80 3.66 9.90
Embryo slack 0.37 0.43 0.53 0.41 0.82 2.70
Closed grassland 25.29 36.00 27.09 29.14 20.91 7.19
Calluna 0.04 0.42 0.16 0.05 0.40 2.42
Calamagrostis 2.65 7.56 3.33 3.33 3.87 11.54
Bare sand 2.11 3.31 2.65 2.17 3.39 4.34
Open water 3.85 3.85 3.44 3.53 3.54 5.63
Scrub 6.48 10.62 7.14 6.22 9.14 5.86
Unclassified 15.53 NA NA NA NA NA
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managers. ANNs provide one means of integrating this
information into an accurate and repeatable land cover
classification method.

Finally, from an inspection of the results of the
fuzzy integral fusion experiments, a very promising
result is shown. It can be seen from Table 6 that the two
source fusions had accuracies of between 92% (Khat
0.8590) and 97% (Khat 0.9481). When the elevation
data were added to the sources to be combined, data
whose individual classification accuracy was very low
(61.61%, which is little better than random class alloca-
tion), these accuracies increased to between 94 and 98%
(Khat of 0.8972 and 0.9561 respectively). Whilst we
have commented before on the unreliability of the clas-
sifier accuracy assessment, this does suggest that the
method successfully utilisized the elevation data and an
improved classification was the result.

Conclusions

The aim of this study was an investigation of the
suitability of data and information fusion methods, as
applied to EO data, for the mapping and monitoring of
a coastal dune system of high conservation status. It is
hoped that the study has shown novel approaches that
overcome some of the difficulties in traditional EO
approaches to the problem. Geographical Information
Systems (GIS) have had much application in the fusion
of both data and information, however, nearly all of
their data models for dealing with the problem assume
each source counts equally in the final assessment. It is
hoped that this study may go some way to make others
question if this assumption is a valid one.

The success in mapping a highly heterogeneous
site, such as Kenfig NNR, using EO data has been

shown. In comparison to existing habitat maps of the
site, the new maps are much more detailed and should
provide site managers with a useful level of detail in a
one-off mapping exercise. The potential for the use of
these methods in long-term surveillance or monitoring,
particularly with reference to the reasons for notification
of cSAC, NNR and SSSI status is promising. The stable
proportion of land cover classes illustrates this for each
of the classification methods.

In terms of the effort involved in such an enterprise,
the returns have been good. EO data acquisition, whilst
not cheap, is not prohibitively expensive when com-
pared to the cost of obtaining a land cover map of
comparable complexity from more traditional, land sur-
vey based, methods.

Regarding the fusion techniques, we have seen how
the various methods may be used to integrate data and
information from various sources. Many of these are
simple techniques, readily applied using commonly
available GIS software. The increase in accuracy gained
by using the more complex fuzzy integral approach is
certainly worthwhile however it is not so easily achieved
using existing software.
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Table 5. Class total areas (three sources)  (%).

Class May August ATM CASI

Young slack 16.47 21.24 23.93 22.60
Mature slack 3.87 3.15 6.56 2.32
Rank grassland 5.37 4.22 3.19 5.32
Pteridium 1.12 4.75 3.35 1.60
Young grassland 14.08 9.28 10.28 12.78
Species rich slack 1.38 7.29 4.17 2.90
Salt marsh 1.29 1.71 1.30 1.09
Phragmites 1.82 0.66 1.38 0.82
Fen meadow 5.95 2.61 6.86 4.01
Embryo slack 0.21 0.61 0.35 0.36
Closed grassland 28.02 28.87 25.39 28.81
Calluna 0.21 0.10 0.21 0.06
Calamagrostis 7.63 2.18 3.87 5.30
Bare sand 2.27 2.69 2.49 2.32
Open water 3.61 3.67 3.59 3.66
Scrub 5.70 6.97 6.11 6.05

Table 6. Summary of classification results.

Classifier Accuracy (%) Khat

Data Fusion (ML) 83.10 0.6959
Data Fusion (ANN) 96.60 0.9444
Majority 97.67 0.9581
Plurality 99.01 0.9642
OWA (Mean) 98.37 0.9708
OWA (Median) 98.29 0.9693
OWA (Max) 97.87 0.9617
Fuzzy ATM 96.83 0.9430
Fuzzy CASI 92.16 0.8590
Fuzzy May 97.11 0.9481
Fuzzy August 91.97 0.8559
Fuzzy ATM/Elev 97.83 0.9610
Fuzzy CASI/Elev 94.27 0.8972
Fuzzy May/Elev 97.56 0.9561
Fuzzy August/Elev 94.41 0.8996
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